IEEE logo    

May 19-21, 2016
hosted by University of North Dakota
and North Dakota State University
Grand Forks, North Dakota, USA


General Information
Organizing Committee
Registration Information
Keynote Speakers
Final Program
Sponsorship Information
Submit a Paper

IEEE Copyright Information
Sample Paper

eit Home


Keynote Speakers

Thursday, May 19, 2016
6:30 PM

Dean Hesham El-Rewini
College of Engineering & Mines
University of North Dakota


Heather Silseth-Karels

Heather graduated from the University of North Dakota in 1990 and has worked for large companies like Raytheon, CH2M Hill and John Deere. She has been instrumental in developing STEM outreach programs at John Deere Electronic Solutions (JDES), like Introduce a Girl to Engineering and working with the community to make Manufacturing Day and other programs a success. Heather also served as the chair of the Women REACH employee resource group at JDES, and continues to mentor young women engineers.

Prof. Hojjat Adeli
The Ohio State University

Hojjat Adeli received his Ph.D. from Stanford University in 1976 at the age of 26. He is currently an Academy Professor at The Ohio State University. He has authored over 600 research and scientific publications in various fields of computer science, engineering, applied mathematics, and medicine, including 16 high-technology books, and holds a United States patent in the area of design optimization. He is the Founder and Editor-in-Chief of the international research journals Computer-Aided Civil and Infrastructure Engineering and Integrated Computer-Aided Engineering. He is also the Editor-in-Chief of International Journal of Neural Systems. He is the recipient of 55 awards and honors including an Honorary Doctorate. He is a corresponding member of the Spanish Royal Academy of Engineering, a foreign member of Lithuanian Academy of Sciences and Polish Academy of Science, and a Fellow of AAAS, IEEE, AIMBE, and American Neurological Association.

Siddharth Suryanarayanan
Lisa and Desi Rhoden Endowed Chair
Associate Professor
ECE Department
Colorado State University


Amanda Wyland
Electronic Design Technical Manager

Amanda is an Electronic Design Technical Manager at JDES. She earned her Bachelor of Science degree in Electrical Engineering from North Dakota State University and joined John Deere as an intern 18 years ago. Amanda leads development on controller applications as well as oversees a team in power electronic design. She is passionate about inspiring and engaging young people in STEM and enhancing employee strengths.

Kent D. Wanner
Sr. Staff Power Electronics Design Engineer

Kent is a Sr. Staff Power Electronics Design Engineer at JDES. After receiving his BSEE in 1996 from North Dakota State University, he joined the Electronic Design Department of Phoenix International (now JDES). He spent the next decade designing robust controllers, displays, sensors, and telematics systems for ruggedized vehicle applications. Since 2007, he has been applying that experience to vehicle electrification projects and has numerous patents and industry publications related to power electronics and electric motor drive systems.


Plenary Speaker
Friday, May 20, 2016
8:00 AM

Dr. Kendall E. Nygard
Department of Computer Science
North Dakota State University

Kendall E. Nygard is a full professor of computer science at North Dakota State University, Fargo, North Dakota. He earned his PhD degree at Virginia Polytechnic Institute. He has fulfilled many roles at NDSU and the North Dakota University System, including Department Chair, faculty representative on the State Board of Higher Education, and Presiding officer of the NDSU University Senate. He has advised 25 PhD students and more than 150 Master of Science students. In research, he been awarded more than 50 grants and contracts and is widely published. Application areas in which he has conducted research include the smart grid, sensor networks, unmanned air systems, wireless networks, encryption, and social media. His primary methodologies are optimization models, artificial intelligence, and big data analytics. In, 2013 and 2014 he served in Washington D. C. as a Jefferson Science Fellow and Senior Science Adviser for the U. S. Department of State and the U. S. Agency for International Development. He is currently a Virtual Fellow for the U. S. Department of State and a Fellow of the International Academy, Research, and Industry Association. Currently he is leading a Cyber Security research and education initiative for the North Dakota University System.

Mrs. Dona Burkard
Ford Motor Company

Dona Burkard has twenty-seven years in the automotive industry with expertise in embedded software for product applications, diagnostics, manufacturing and advance research. She is currently a manager in the Ford Research and Innovation Center in Dearborn, Michigan, leading the future software and compute architecture designs for 202x vehicles. Dona is the chair of the National Science Foundation Center of Embedded Systems Industry Advisory Board, and serves on the industry advisory board for Oakland University's Electrical and Computer Engineering Department. She has a M.S. in Engineering Management and a B.S. in Computer Engineering from Oakland University.

Dr. James J. Wu
NASA Glenn Research Center

Dr. James J. Wu is a research scientist/engineer at NASA Glenn Research Center. He earned his Ph.D. in Chemistry from the University of Illinois at Urbana-Champaign. Dr. Wu possesses more than twenty years of industrial and government R&D experience on battery, energy storage material and technology development. Dr. Wu is currently working on the development of advanced energy storage materials and design for safe and high capacity next-generation battery technology. Dr. Wu was an anode team leader in the development of Si as advanced anode material for high energy and ultra-high energy Li-ion battery technology development under NASA Advanced Space Power System project, and a lead researcher in development of safe electrolytes to enable Li-metal safely cycling for beyond Li-ion battery technology for NASA Advanced Energy Storage Systems. Dr. Wu is a recipient of numerous NASA Center Innovative Fund awards. He has 8 patents/disclosures, more than 20 research papers and 1 book chapter. He is currently editing a book on battery materials. He delivered more than 20 presentations/seminars at government battery and safety workshops, national/international meetings and conferences, as well as universities (among which 12 were invited).

Distributed Decisions and Security in Cooperative Control
Advances in sensing, communication, and embedded computation have led to a world of interconnected distributed systems of high complexity. In cooperative control we are concerned with systems that are comprised of distributed components or devices that are to collectively seek common objectives. Examples include mobile sensor networks (MANETS), systems of autonomous vehicles, and the smart electrical grid. Fundamental characteristics of such system are that each entity is capable of sensing information locally, and that communication among the entities is incomplete. Thus, information is distributed among the entities and they must function with local decision-making autonomy. Centralized control is impossible, since no entity has full information or the computational capacity to coordinate the system in a global sense. In this talk, we give several examples of such systems and their control mechanisms. We also describe some of the cybersecurity challenges in operating such systems.

Plenary Speaker
Friday, May 20, 2016
8:00 AM

Dr. David Corman
Program Director National Science Foundation

Dr. David Corman is the Program Director leading the Cyber Physical Systems Program for the National Science Foundation.
Dr. Corman obtained a dual BS degree in System Science and Mathematics and Applied Mathematics and Computer Science from Washington University in 1977. He then obtained a dual MS degree in SSM and Mechanical Engineering from Washington University in 1978. He completed his graduate education at the University of Maryland - College Park, and obtained a PhD in Electrical Engineering in 1983 with a major in controls and minor in communications. While at Maryland, Dr. Corman also worked at the Johns Hopkins Applied Physics Laboratory in the area of estimation, detection, and control. He worked for McDonnell Douglas / Boeing in a variety of positions. His work included a broad portfolio of DARPA and Air Force Research Laboratory research programs including Software Enabled Control, Mixed Initiative Control of Automa-teams, Threat Agent Cloud Tactical Intercept and Countermeasures, and Adaptive Vehicle Make. He was elected a Boeing Technical Fellow in 1999.
Dr. Corman jointed NSF's Computer and Information System Engineering (CISE) directorate as an IPA in March 2013 as a Senior Research Scientist with the University of Maryland's Institute for Systems Research. He was appointed as a Research Associate Professor in the Preston M. Green Department of Electrical & Systems Engineering at Washington University in St. Louis, in March 2015.
Dr. Corman's current research interests are in the field of Cyber Physical Systems (CPS), security for CPS, unmanned systems, manufacturing, and Smart and Connected Communities. Dr. Corman has approximately 30 publications and has obtained five patents.

NSF and Smart and Connected Communities

Lunch Speaker
Friday, May 20, 2016
12:00 PM

Dr. Steve Benson
Energy & Environmental Research Center and Institute for Energy Studies
University of North Dakota

Dr. Benson is the Associate Vice President for Research of Energy & Environmental Research Center (EERC), and also an adjunct Professor with the Institute for Energy Studies (IES), University of North Dakota (UND). Dr. Benson's principal areas of interest and expertise include development and management of complex multidisciplinary programs that are focused on solving environmental and energy problems, associated with the development and utilization of fuel resources. These programs include 1) technologies to improve the performance of fuel resource recovery, refining, conversion and environmental control systems; 2) impact of fuel properties on combustion and gasification systems; 3) carbon dioxide separation and capture technologies, 4) advanced analytical techniques; 5) computer based models to predict the performance of combustion and gasification systems; 6) technical and economic feasibility of fuel conversion technologies; and 7) state and national environmental policy.
He was the editor of ten technical journal special issues and author and coauthor of four patents and over 200 publications.

Dr. Advait Madhavan
NIST Center for Nanoscale Science and Technology


Advait Madhavan received his PhD in 2016 from the Electrical and Computer Engineering Department at UC Santa Barbara. His research interests are focused on novel methods for information processing, ranging from conceptualization of high-level architectures, analog and digital circuit design as well as integration with emerging technologies and chip design. He was awarded the Micro Top Pick award in 2015. He is currently a Post-Doctoral Researcher at National Institute of Standards and Technology, Gaithersburg.

Shannon Mutschelknaus
Display Design Engineer
Daktronics Inc.

Shannon Mutschelknaus is a display design engineer with more than 16 years of experience at Daktronics Inc. He has multiple patents of LED lighting systems. Products that he's been a part of are showcased throughout the world at such renowned locales as Times Square New York, Macau China or sailing the seas on cruise ships. He has 5+ years experience focusing on electronics cooling design and measurement utilizing CFD tools and thermal testing systems. He has 6+ years experience designing LED display module components utilizing FEA & ray tracing tools. He has 5 years experience with the failure analysis and benchmarking performance and reliability of LEDs and LED display systems in his current role leading a team of techs and engineers testing and evaluating LED display products.
When he's not designing the next greatest display, you can find him running his small acreage with his wife and two children while experimenting with agricultural innovations. He is the proud recipient of a recent USDA SARE Research Grant FNC19-1185 for development & prototyping of a High-Efficiency Year-Round Tropical Greenhouse in South Dakota!

The University of North Dakota is partnering with Barr Engineering and Pacific Northwest National Laboratory to determine the technical and economic feasibility of concentrating rare earth elements (REEs) from North Dakota lignite and associated materials. The project is funded by the US Department of Energy, North Dakota Industrial Commission, North American Coal Corporation, and Great River Energy. The commercial uses for these elements are increasing because of their high magnetism, luminescence, and high strengths imparted in materials. The REE containing materials are used various applications that include portable electronics, hybrid and electric cars, catalysts, lighting, and computer hard drives.
Concentrating REEs in coal-related feedstocks presents a significant technical challenge. The quantity of REEs in coal, associated sediments, coal preparation/drying reject streams, and other by-products is typically substantially lower than in traditional REE-containing ores. In coal the REEs are mainly associated with the inorganic fraction in several mineral forms that include mainly phosphates, carbonates, and clay minerals.
The project, if successful, will enable migration of the technology to the next scale (pilot-scale) and will be a foundation for eventual larger scale demonstrations and commercial deployment. Successful demonstration of the technical and economic feasibility of REEs recovery from coal-related feedstocks will provide tremendous economic benefit and help ensure the supply of REEs to a multitude of high-importance end-use applications.

Banquet Speakers
Friday, May 20, 2016
6:15 PM

Dr. Daniel Ewert

Dr. Ewert has been involved in cardiovascular engineering for over 25 years. He's consulted for major medical device companies in the area of cardiovascular engineering and performed research with US and intern tional colleagues. His academic background is in Mechanical Engineering and Physiology and has been a member of NDSU's Electrical and Computer Engineering since 1990. He has co-founded a medical device company, Krisara Engineering, that specialized in chronic disease management in the out-of-clinic environment.

Dr. Benjamin Braaten
Associate Professor
Electrical and Computer Engineering Department

Dr. Braaten received the Ph.D. degree in Electrical Engineering from North Dakota State University, Fargo, ND, USA, in 2009. During the 2009 Fall semester, he held a post doctoral research position at the South Dakota School of Mines and Technology, Rapid City, SD, USA. Currently, he is an Associate Professor in the Electrical and Computer Engineering Department, at North Dakota State University, Fargo, ND, USA. His research interests include implantable antennas, bio-electromagnetics, printed antennas, conformal self-adapting arrays, microwave devices, topics in EMC/SI, and methods in computational electromagnetics.

Mr. Dave Robins
President, Intrepid Control Systems


Prof. Hojjat Adeli
Distinguished Member, ASCE
and American Neurological Association
Academy Professor
The Ohio State University

Hojjat Adeli received his Ph.D. from Stanford University in 1976 at the age of 26. He is currently an Academy Professor at The Ohio State University where he held the Abba G. Lichtenstein Professorship for ten years. He has authored 610 research and scientific publications in various fields of computer science, engineering, applied mathematics, and medicine, including 16 ground-breaking high-technology books such as Automated EEG-based Diagnosis of Neurological Disorders - Inventing the Future of Neurology (CRC Press, 2010), and holds a United States patent. He is the recipient of 59 awards and honors including Honorary Doctorates and membership in 4 European academies. In 1998 he received the Distinguished Scholar Award, The Ohio State University's highest research award "in recognition of extraordinary accomplishment in research and scholarship". In 2007 he received the Peter L. and Clara M. Scott Award for Excellence in Engineering and Charles E. MacQuigg Outstanding Teaching Award from OSU. In 2010, he was profiled as an Engineering Legend in the ASCE journal of Leadership and Management in Engineering. He has served on the editorial board of 143 journals and presented 112 Keynote/ Plenary Lectures at conferences held in 44 different countries. He has held Honorary/Distinguished Professorship at half a dozen Asian and European Universities. He is a Distinguished Member of ASCE, and a Fellow of AAAS, IEEE, AIMBE, and American Neurological Association. He is a Clarivate Analytics Highly Cited Researcher in two categories of Computer Science and Engineering.

How do you mend a broken heart: The Role of Team
Heart disease is a leading cause of death in America. NDSU researchers are exploring pioneering technology to address systolic heart failure. An innovative pacemaker system is in development that stimulates several regions of the heart without wires or internal batteries. Ewert and Braaten will present new results on the leading-edge research and the role that "team" played in the success.

Plenary Speaker
Saturday, May 21, 2016
8:00 AM

Dr. Lotfollah Shafai
University of Manitoba, Canada
Department of electrical and Computer Engineering

Lotfollah Shafai received his B.Sc. from University of Tehran in 1963 and M.Sc. and Ph.D., from University of Toronto, in 1966 and 1969. In November 1969, he joined the Department of Electrical and Computer Engineering, University of Manitoba as a Lecturer, Assistant Professor 1970, Associate Professor 1973, Professor 1979, and Distinguished professor 2002, and Distinguished Professor Emeritus 2016. His assistance to industry was instrumental in establishing an Industrial Research Chair in Applied Electromagnetics at the University of Manitoba in 1989, which he held until July 1994.
In 1986, he established the symposium on Antenna Technology and Applied Electromagnetics, ANTEM, at the University of Manitoba, which has grown to be the premier Canadian conference in Antenna technology and related topics.
He has been the recipient of numerous awards. In 1978, his contribution to the design of the first miniaturized satellite terminal for the Hermes satellite was selected as the Meritorious Industrial Design. In 1984, he received the Professional Engineers Merit Award and in 1985, "The Thinker" Award from Canadian Patents and Development Corporation. From the University of Manitoba, he received the "Research Awards" in 1983, 1987, and 1989, the Outreach Award in 1987 and the Sigma Xi Senior Scientist Award in 1989. In 1990 he received the Maxwell Premium Award from IEE (London) and in 1993 and 1994 the Distinguished Achievement Awards from Corporate Higher Education Forum. In 1998 he received the Winnipeg RH Institute Foundation Medal for Excellence in Research. In 1999 and 2000 he received the University of Manitoba Research Award. He is a life Fellow of IEEE and a life Fellow of The Royal Society of Canada. He was a recipient of the IEEE Third Millenium Medal in 2000 and in 2002 was elected a Fellow of The Canadian Academy of Engineering and Distinguished Professor at The University of Manitoba. In 2003 he received an IEEE Canada "Reginald A. Fessenden Medal" for "Outstanding Contributions to Telecommunications and Satellite Communications", and a Natural Sciences and Engineering Research Council (NSERC) Synergy Award for "Development of Advanced Satellite and Wireless Antennas". He held a Canada Research Chair in Applied Electromagnetics from 2001 to 2015, and was the International Chair of Commission B of the International Union of Radio Science (URSI) for 2005-2008. In 2009 he was elected a Fellow of the Engineering Institute of Canada, and was the recipient of IEEE Chen-To-Tai Distinguished Educator Award. In 2011 he received the Killam Prize in Engineering from The Canada Council, for his "outstanding Canadian career achievements in engineering, and his research on antennas". In 2013 he received The "John Kraus antenna Award" from IEEE Antennas and Propagation Society "For contributions to the design and understanding of small high efficiency feeds and terminals, wideband planar antennas, low loss conductors, and virtual array antennas". In 2014, he was the recipient of Edward E. Altshuler Best paper Prize from IEEE APS Magazine.

Prof. Mark Steffka
IEEE EMC Society Distinguished Lecturer


Professor Mark A. Steffka, has a B.S.E. – E.E., from the University of Michigan - Dearborn, and a M.S. from Indiana Wesleyan University. He has held academic appointments since 2000 as a Lecturer with the Electrical and Computer Engineering department at the University of Michigan - Dearborn, and since 2006 as an Adjunct Professor at the University of Detroit – Mercy. His university responsibilities include teaching undergraduate, graduate, and professional development courses on electrical/electronic circuit design, electromagnetic compatibility (EMC), antennas, and electronic communication systems. He is an IEEE Senior Member, a member of SAE International, and has had numerous leadership roles both within IEEE and SAE. In 2010 he was selected as an IEEE EMC Society Distinguished Lecturer, and in 2016 he was the recipient of the IEEE "Laurence G. Cumming Award" (the EMC society's highest distinction).

Mr. Steffka also has over 35 years of full time industry experience with military HF/VHF/UHF secure communications, spacecraft instrumentation, automotive electrical/electronics, and industrial electronics. Currently he is at the General Motors Global Technical Center and is a technical leader for the vehicle antennas group. Prior to this role, he was a Global Team Leader – EMC Technical Specialist with General Motors Global Propulsion Systems.

His patents include methods for electromagnetic interference reduction methods, as well as aircraft and ground vehicle antenna systems. Professor Steffka is the co-author of the book "Automotive Electromagnetic Compatibility" (2004), is the author (or co-author) of numerous technical papers presented at IEEE and SAE conference/symposiums (both as a technical session participant or invited speaker).

D. Subbaram Naidu, PhD
Life Fellow IEEE
Minnesota Power Jack Rowe Endowed Chair
University of Minnesota Duluth, USA

Desineni "Subbaram" Naidu received MTech and PhD (1979) degrees in Electrical Engineering (with specialization in Control Systems Engineering), from Indian Institute of Technology (IIT), Kharagpur, INDIA. Dr. Naidu taught, visited and/or conducted research at IIT; National Research Council (NRC) Senior Research Associate at Guidance and Control Division at NASA Langley Research Center, Hampton, VA, USA (1985-90); Old Domain University, Norfolk, VA, USA (1987-90); as Professor, Associate Dean and Director, School of Engineering at Idaho State University and Measurement and Control Engineering Research Center, Pocatello, Idaho, USA (1990-2014); National Research Council (NRC) Senior Research Associate at Center of Excellence in Advanced Flight Research at United States (US) Air Force Research Laboratory, Wright Patterson Air Force Base (WPAFB), Ohio, USA (1998-99); Visiting Research Fellow at Center of Excellence for Ships and Ocean Structures at Norwegian University of Science and Technology, Trondheim, NORWAY (2014); Academic Guest at Measurement and Control Laboratory at Swiss Federal Institute of Technology, Zurich, SWITZERLAND (2015); Visiting Professor at Nantong University, Nantong; Jiangsu College of Information Technology, Jiangsu, East China Normal University, Shanghai, Chinese Academy of Sciences, Beijing CHINA (2007,2-09,2011); Visiting Research Professor at the University of Western Australia in Perth, and Center for Industrial and Applied Mathematics at the University of South Australia, Adelaide, AUSTRALIA (2008); Satish Dhawan Endowed Visiting Professor at Indian Inst. of Science (IISc), Bengaluru, INDIA (2017), Nizhny Novgorod and Moscow State University, Moscow, Novosibirsk State Technical University, Novosibirsk (New Siberia), Institute of Control Sciences (ICS), Russian Academy of Sciences RUSSIA (2012,2018).
Since August 2014, Professor Naidu has been with University of Minnesota Duluth as Minnesota Power Jack Rowe Endowed Chair and Professor of Electrical Engineering. Professor Naidu received twice the Senior National Research Council (NRC) Associateship award from the US National Academy of Sciences (NAS), and is an elected (1995) (now Life) Fellow of the Institute of Electrical and Electronic Engineers (IEEE) and an elected (2003) Fellow of the World Innovation Foundation, UK. Professor Naidu’s teaching and research interests are Electrical Engineering (Power and Energy); Control Systems; Optimal Control: Theory and Applications; Biomedical Sciences and Engineering (Prosthetics and Infectious Diseases); Large Scale Systems and Singular Perturbations and Time Scales (SPaTS): Control Theory and Applications; Guidance and Control of Aerospace Systems: Aeroassisted Orbital Transfer for Mars mission and Uninhabited Aerial Vehicles (UAVs); Advanced Control Strategies for Heating, Ventilation, & Air-Conditioning (HVAC); Modeling, Sensing and Control of Gas Metal Arc Welding (GMAW) and has over 200 journal and conference publications including 9 books. He has been on the editorial boards of several journals including the IEEE Transactions on Automatic Control, Mechatronics: The Science of Intelligent Machines, An International Journal, ELSEVIER, and Optimal Control: Applications and Methods (Wiley). More details at

Antenna Miniaturization
Increasing emerging technologies in communications, navigation, remote sensing, medical imaging and health monitoring, operate with wireless information exchanges among multiple devices. Since the dominant means of information exchange is electromagnetic waves, they need antennas to transmit and receive the waves and electronics to process them. However, antennas must interface two separate bounded and unbounded media, where waves have distinct sizes. Consequently, to interact efficiently with waves their dimensions have become wavelength dependent, limiting their size reductions. This is the major impediment for antenna miniaturization. On the other hand, advancement of traditional technologies and emergence of new ones require ongoing size reductions to incorporate more features and operate at lower cost. Any small reduction in the antenna size provides a major progress in related technologies. This presentation will highlight the penalties paid for antenna miniaturization using traditional design methods, and provide examples of new design techniques that can overcome them.

Lunch Speaker
Saturday, May 21, 2016
12:00 PM

Dr. Mark Guy
Dept of Teaching & Learning
University of North Dakota

Dr. Guy received his Ph.D. in Science Education in 1993 from the University of Georgia, Athens, Georgia.

Dr. Tim Young


Prof. Madjid Fathi
University of Siegen, Germany


Prof. Madjid Fathi
University of Siegen, Germany

Madjid Fathi is a professor at the Department of Electrical Engineering and Computer Science, University of Siegen. He is the Chair and Director of the Institute of Knowledge-Based Systems and Knowledge Management. Madjid received his M.Sc. in informatics and PhD in mechanical engineering, both from University of Dortmund. He obtained his Habilitation degree in informatics and automation from the University of Ilmenau. His research interests are focused on knowledge management applications in medicine and engineering, computational intelligence and knowledge discovery from text (KDT). Madjid is the editor of the book series "Integrated Systems: Innovations and Applications" published by Springer. He obtained the cut-e European Innovation Award in 2015.

Injecting STEAM into STEM
This presentation focuses on two recent Math/Science Partnership Grants at the University of North Dakota. The first MSP grant entitled Visualizing-STEM promoted STEM learning for students in grades 5 - 8 using a variety of visualizations to explore the theme of "Solar Energy" aligned with the Next Generation Science Standards. The second MSP grant is entitled STEAM Energy! and integrates STEM content with language arts, social studies, and creative arts in grades 6 – 12. The overarching goal of the STEAM Energy! project involves students as agents of change to shift an existing city that is relying on non-renewable energy sources and transform it into using renewable energy sources. Goals and outcomes of these two projects are described. Our vision of STEM/STEAM and the vital role of Engineering + Technology faculty and students will be discussed.